Status of coupled-bunch stability studies for PETRA IV

S. Antipov, Y.-C. Chae, C. Li, A. Rajabi and PETRA IV Beam Physics Team

Many thanks M. Dohlus, W. Mueller DESY-TEMF Collaboration meeting

20.10.22

PETRA IV light source

Circumference	2304 m
Hor. emittance	20 pm
Coupling	0.2
Energy spread	0.9x10 ⁻³
Mom. compaction	3.33x10 ⁻⁵
Nat. bunch length	2.3 mm
Tunes	135.18, 86.27
Energy loss / turn (ID closed)	4.30 MeV
Chromaticity	5, 5
RF voltage (MC)	8 MV
Harmonic number	3840
Max. total current	200 mA

Foreseen filling patterns

Timing

Foreseen filling patterns

More exotic filling patterns

More exotic filling patterns

Goal: Ensure sufficient stability margin for all modes of operation

- Main sources of long-range wakes
 - Resistive wall
 - Higher order modes
 - Beam-ion interaction
- Stabilizing mechanisms
 - Chromaticity
 - Multibunch feedback
 - Synch. radiation damping
- Want at least a 100% safety margin at the design stage

Impedance

Working impedance model

GEO impedance.

- Wake potential of each element is from GDFIDL (1mm leading bunch)
- RW impedance (ImpedanceWake2D simulation).
 - From ID Chambers
 - From the rest of the ring

Courtesy C. Li

	Element	Number	BetaX/BetaMin/BetaMax	BetaY/BetaMin/BetaMax	Beta Z	Comment		
	General components							
p0bpm.stdwake	BPM	788	6.18	7.31	1	Exact BPM locations		
CA.stdwake	Absorber	576	3.8	4.73	1	Radiation absorbers at arc BPMs. Exact locations		
bellow.stdwake	Bellow	375	2.71	4.25	1	CDR Estimate number, updated betas		
flange.stdwake	Flange	375	2.71	4.25	1	CDR Estimate number, updated betas		
	ID Arcs (19 x 5 m + 5 x 10 m)							
id6mm.stdwake	ID 6 mm	17	5.04	5.04	1	Average betas over the ID		
id5mm.stdwake	ID 5 mm	4	5.04	5.04	1	Exact number of ID with smaller gaps is an estimate. Average betas over the ID		
id7mm.stdwake	ID_10 7 mm	5	10.25	10.25	1	Super ID. Average betas over ID		
p0bpm.stdwake	ID BPM	0	0	0	0	No small aperture ID BPMs foreseen		
CA.stdwake	Absorber	96	5.85	4.4	1	Preliminary locations, sketch from Katharina		
bellow.stdwake	Bellow	96	5.7	4.3	1	Preliminary locations, sketch from Katharina		
flange.stdwake	Flange	96	5.8	4.4	1	Estimate		
	Long straigh	t section						
bessy.stdwake	RF	24	20	20	1	Estimate. RF section was re-optimized to lower average betas		
h3cav_hom.stdwake	3V RF	24	20	20	1	Estimate. RF section was re-optimized to lower average betas		
fbcav	Long FB	8	averBetax	averBetay	0	No Longitudinal feedback foreseen		
fct22mm.stdwake	FCT	6	averBetax	averBetay	1	Fast current monitor		
	Short straight section							
feedbackH.stdwake	Tr FB H	4	12.5	15	1	Rough estimate		
feedbackV.stdwake	Tr FB V	4	12.5	15	1	Rough estimate		
vsrTwo3mm.stdwake	Collimators	4	12.5	15		A few will be needed, exact number to be finalized. Assuming average betas		
	Injection stra	ight section						
kicker20mm.stdwake	Inj Kicker	30	10	10	1	Preliminary estimate for 2 ns spacing, top-up stripline kicker		
kicker20mm.stdwake	Ext Kicker	0	0	0	0	No extraction foreseen		
	final Geo impedance is given to GeoImp.sdds							
	ID Chamber RW impedance							
SuperID_Chamber.sdds	SuperID	5	6.08/4/10.25	6.08/4/10.25		10m long for each		
5mmID_Chamber.sdds	5mmID	4	3.14/2.2/5.04	3.14/2.2/5.04		5m long for each		
6mmID_Chamber.sdds	6mmID	17	3.14/2.2/5.04	3.14/2.2/5.04		5m long for each		
	Ring Round chamber RW impedance							
RW_Ring.sdds		1	averBetax	averBetay		2304		

Working impedance model

GEO impedance.

- Wake potential of each element is from GDFIDL (1mm leading bunch)
- RW impedance (ImpedanceWake2D simulation).
 - From ID Chambers
 - From the rest of the ring

Courtesy C. Li

	Element	Number	BetaX	/BetaMin/BetaMax	BetaY/BetaMin/BetaMax		Beta Z	Comment			
	General components										
p0bpm.stdwake	BPM	788	6.18		7.31		1	Exact BPM locations			
CA.stdwake	Absorber	576	3.8		4.73		1	Radiation absorbers at arc BPMs. Exac	t locations		
bellow.stdwake	Bellow	375	2.71		4.25		1	CDR Estimate number, updated betas			
flange.stdwake	Flange	375	2.71		4.25		1	CDR Estimate number, updated betas			
	ID Arcs (19 x	5 m + 5 x 10 m	1)								
id6mm.stdwake	ID 6 mm	17	5.04		5.04		1	Average betas over the ID			
id5mm.stdwake	ID 5 mm	4	5.04						un estimate. Average betas over the ID		
id7mm.stdwake	ID_10 7 mm	5	10.25	TABLE III.	Impedance co	ntribu	tions at c	chromaticity 5			
p0bpm.stdwake	ID BPM	0	0								
CA.stdwake	Absorber	96	5.85	т 1	· ·1 ··	T 7 1		(07)	rina		
bellow.stdwake	Bellow	96	5.7	Impedance con	tribution	Value	e (MM/m)) Share $(\%)$	rina		
flange.stdwake	Flange	96	5.8		1	0.00	× / /				
	Long straigh	t section		RW round char	mbers	0.32		23			
bessy.stdwake	RF	24	20			0.01			lower average betas		
h3cav_hom.stdwake	3V RF	24	20	RW ID chambe	ers	0.64		46	lower average betas		
fbcav	Long FB	8	averE								
fct22mm.stdwake	FUI Chart straigh		averE	Geometric imp	impedance < 0.4		< 30				
for a state of the state of the	Short straigh	t section	40.5	ep	0.00012.0.0			_ • • •			
feedbackH.stdwake		4	12.5								
feedbackv.stdwake		4	12.5								
vsrTwo3mm.stdwake	Collimators	4	12.5	.5 15				A few will be needed, exact number to b	e finalized. Assuming average betas		
	Injection stra	ight section			-						
kicker20mm.stdwake	Inj Kicker	30	10		10		1	Preliminary estimate for 2 ns spacing, t	op-up stripline kicker		
kicker20mm.stdwake	Ext Kicker	0	0		0		0 1	No extraction foreseen			
					final Geo impedance is g	given to Geolı	np.sdds				
	ID Chamber RW impedance										
SuperID_Chamber.sdds	SuperID	5	6.08/4/1	10.25	6.08/4/10.25			10m long for each			
5mmID_Chamber.sdds	5mmID	4	3.14/2.2	2/5.04 3.14/2.2/5.04				5m long for each			
6mmID_Chamber.sdds	6mmID	17	3.14/2.2	2/5.04	3.14/2.2/5.04			5m long for each			
		king kound chamber kw impedance									
RW_Ring.sdds		1	averBe	tax	averBetay			2304			

Airbag model gives a simple analytical estimate

Simple analytical estimate: Air-bag model

• At chromaticity 0:

$$\Gamma = \frac{M N_b r_0 c}{2 \gamma T_0^2 \omega_\beta} \Re Z(\omega')$$

- Lowest betatron sidebands: (23.4, 35.1 kHz)
- Growth times for full machine (M = 1920):
 (140, 80) revolutions
- Note: this is an upper bound

NHT Vlasov solver

- Physics:
 - Impedance: Single-bunch + couple-bunch modes
 - Chromaticity
 - Transverse feedback system (assumed ideal)

 $\frac{\Delta \omega}{\omega_s} X = \underbrace{SX} - \underbrace{iZX} - \underbrace{igFX} + \underbrace{CX},$

• Discretizing the longitudinal distribution on a set of air-bags

Impedance and long-range resistive wall wakes

14

Brightness mode: Horizontal plane

S. Antipov, Transverse feedback is essential for the feasibility of the 200 mA Brightness mode 15

Brightness mode: Vertical plane

S. Antipov, Transverse feedback is essential for the feasibility of the 200 mA Brightness mode 16

Timing mode: Horizontal plane

Timing mode: Vertical plane

S. Antipov, DESY-TEMF Meeting, TU Darmstadt, 20 Oct. 2022

18

Couple-bunch growth times for different operation modes: no feedback, no synchrotron damping

Growth rates in horizontal (vertical) planes

Filling scheme	Q' = 0	Q' = 5
Brightness 4 ns, 200 mA	250 (160) turns	3 530 (2080) turns
Brightness 2 ns, 200 mA	250 (160) turns	3 130 (2050) turns
Timing 80 b., 80 mA	770 (270) turns	17 150 (9370) turns
Timing 40 b., 80 mA	640 (110) turns	8 720 (5310) turns
Timing 80 b. 200 mA	160 (100) turns	5 510 (2360) turns

SR damping ~3 000 turns

Higher Order Modes

RF straight section: Layout optimized to reduce the β -functions, # aperture transitions

Several CB modes are excited

Conservative limits: All HOMs have the same frequencies

Longitudinal stability

Transverse stability

 $Z_{||}^{thresh}(f) = \frac{1}{f} \frac{1}{N_C} \frac{2EQ_s}{I_B \alpha_C \tau_s}$

 $Z_{x,y}^{thresh}(f) = \frac{1}{f_{rev}} \frac{1}{N_C} \frac{2E}{\beta_{x,y} I_B \tau_{x,y}}$

Example: HOM at 1 GHz

- 24 cavities, $\beta = 20$ m, vertical plane, M = 1920, $Q_b = 1$ nC
- FB and chromaticity might be insufficient to stabilize

Must make sure the modes are well damped

Transverse plane: need to make sure $R_s < 55 \text{ k}\Omega/\text{m}$

- Computed without losses, assuming Q < 1000
- Have to be verified with wall losses

kr f	[GHz]	Qext = QL	R/Q (with TT) [Ohm]	Energy [J]	Voltage [V] x0y0	Voltage [V] x5y0	Voltage [V] x0y5	Voltage/r [V/m]	Rtx/Q/rho [Ohm/m]	Rty/Q/rho [Ohm/m]	Rt/Q [Ohm]
1	0.49955279024069	2887.6248476858	225.65056728295	1.000297066811	8.4171165577659E+05	8.41855699204031E+05	8.41288917178699E+05	89321.0907089248	0.0126240006234268	0.108731134453783	10.7764769690762
2	0.62050293522244	525.11987823031	1.7010372397118	0.99884198403287	8.13892711477911E+04	7.61713522298945E+04	8.2983858579844E+04	1091226.59264159	10.75256485862560	1.00418583749811	0.06540210788765
3	0.62162739508796	222.25862602368	2.2995651610279	0.99855846788505	9.47031918470079E+04	9.66248608302338E+04	9.56682302177656E+04	430074.91152715	1.45353421235784	0.36657028796444	0.08825459763871
4	0.62357569999324	96.573761956449	1.670781087987	0.99854949240183	8.08498276816566E+04	8.11199546305649E+04	8.02518154435628E+04	131238.287924898	0.02854235167825	0.13988594140605	0.06392226162785
5	0.62923728675441	70.085061853441	1.108485558341	0.99940629355153	6.61809837910445E+04	5.96436173812815E+04	6.97395039940552E+04	1488626.55640336	16.40350149112820	4.86037501449507	0.04202786747461
6	0.63566729606325	77.513230787534	1.2611248092123	0.99939862659687	7.09501433343034E+04	7.51169684525662E+04	7.44552175977522E+04	1088999.12136745	6.53001155068232	4.62059443219561	0.04733146702356
7	0.64077260118994	28.745716582463	19.472030900917	0.99905631702567	2.79861083404747E+05	2.80382689049699E+05	2.78050902606652E+05	376766.610550226	0.10073690785134	1.21324345670992	0.72498510021836
8	0.65145469663379	21.966030850412	0.43820243953686	0.99895712929329	4.23294733109839E+04	3.79412125691126E+04	4.14911979052567E+04	893521.974984297	6.89876652027058	0.25174453237738	0.01604768296962
9	0.65579023518499	20.086427878144	2.0776135697515	0.99886957726585	9.24717734185989E+04	9.35596031832585E+04	9.24439401223539E+04	217637.155767045	0.41839365074062	0.00027390029139	0.07558255904525
10	0.67067894408684	30.429109022162	49.68684830708	0.99979520972181	4.57534156143391E+05	4.59052005371437E+05	4.56408562479928E+05	377932.659308925	0.77807016059151	0.42788274292595	1.76745572066802
11	0.68896589761329	130.27891027686	5.3243528858353	1.0012535978178	1.51912761249237E+05	1.50950672154867E+05	1.52277192909071E+05	205759.652040438	0.295796431173091	0.042441873289005	0.18437026101571
12	0.70633847240895	11.53687282659	0.0048272768192108	0.99900347247156	4626.2698975465	9036.0258824315	4468.9246784792	882512.444426534	5.92568119846443	0.00754425342884163	0.000163046359669512
13	0.71130537619209	11.769430386003	5.6852143514389	0.999067172889	1.59326767939542E+05	1.59371759396534E+05	1.56450344379259E+05	575355.080949265	0.000608212204818064	2.48599751655146	0.190683237507245
14	0.71534299214279	11.308472918786	13.998234022621	0.99914296455267	2.50724942198735E+05	2.50899627166139E+05	2.51851854325381E+05	228074.179075032	0.00906476741270	0.37724692077746	0.46685357338064
15	0.78545059973889	390.10197837964	0.010272335436882	0.99924049897896	7117.3608004266	1.36167754055791E+04	6702.8322383355	1302524.07484021	10.4074082902858	0.0423353377059837	0.000312012563319627
16	0.78820981148631	9.2130919924043	0.6717744881112	0.99923186531314	5.76574914650711E+04	5.75332956870913E+04	5.28789831923689E+04	956024.390976535	0.00377368463665	5.58645910054501	0.02033309241688
17	0.79312305070041	8.9264284216597	2.1014350450912	0.99929209251399	1.02297361164481E+05	1.01517196182974E+05	1.04211674378472E+05	413436.934955278	0.14706224716853	0.88543011069334	0.06321165527864
18	0.79952348905802	8.6346663272222	0.57263653661066	0.99939228336819	5.36183037812536E+04	5.54289339405638E+04	5.57241120782065E+04	555438.931200158	0.77940455777117	1.05424392228170	0.01708714841142
19	0.81816528985885	776.01509738588	0.023485138139209	0.99974432329527	1.09863009749497E+04	1.4737511136098E+04	9702.9108941142	792935.50236294	3.19354934577486	0.37380765911009	0.00068481589597
20	0.82049170983973	8.3485985945131	0.067121396346512	0.99963318804607	1.85984973583886E+04	1.73045647247662E+04	1.73440181568635E+04	360443.045565429	0.37786455773664	0.35517284752614	0.00195167972200
21	0.83708792104343	119.38276956106	0.0076802306449062	1.0000829337306	6355.9520346365	8744.4263562332	8182.4004705019	601355.91703423	1.23641673309231	0.723000424634369	0.000218889511376395
22	0.84701452246219	19.77558446317	0.030877376555274	1.0028914194256	1.28375609136695E+04	1.04861662664239E+04	1.09734601477417E+04	600130.934134473	1.16712483168588	0.733508293354941	0.000869703668621882
23	0.87444682108517	22.414503189007	0.22472642360261	0.99979401706344	3.51349203006937E+04	3.7466267207051E+04	3.85760471879619E+04	831300.972020649	1.07978763715464	2.35247989949300	0.00613115790757
24	0.87597264750135	434.34349381081	0.069220671911441	0.99974358388058	1.95162972866946E+04	2.39287954933409E+04	2.20184294196288E+04	1014510.83058425	3.85479471425165	1.23951746811417	0.00188524166631
25	0.90459879912	7.3921805478413	0.14350136255882	0.99941346004231	2.85508174415767E+04	2.8406953362686E+04	3.33191121599554E+04	954092.896829513	0.00384369942158868	4.22251168738295	0.00378461566272247
26	0.91325822233152	7.3152233422991	0.00013759744087886	0.99916646445888	888.20013040537	3098.4826753156	910.5379571134	442079.08373217	0.890373948150096	0.0000909407834361191	0.00000359450034978277
27	0.92330538654101	8.1369559728984	0.34904847658722	0.99965384171074	4.4991483349901E+04	4.57240659570792E+04	4.55961093779572E+04	189973.672927911	0.0956477408565096	0.0651531154452495	0.00901907798489829
28	0.92570195254091	8.0497401840095	0.0053459153806392	0.99964569269353	5575.1892438846	1.40715529881606E+04	5078.2898204443	1702176.32355832	12.7991056215042	0.0437774453506968	0.000137775712248488
29	0.98815006929656	140.76999604246	0.14310672943767	0.99908960392881	2.97943307833013E+04	3.32279531096032E+04	2.68734690464294E+04	901580.735499627	1.83550970469123	1.32823107198925	0.00345508642736
30	1.0118779520743	806.71270297987	0.56609188914782	0.999695026294	5.99834212298152E+04	6.00698716860282E+04	6.93161945262572E+04	1866634.73753341	0.00110895179631052	12.9240765805744	0.0133469048321386
31	1.0151299745999	967.17427588105	0.0035499137110798	0.99970419899101	4757.6820630384	3.61653308767779E+04	5349.5296796267	6282644.94495257	145.431311335242	0.0516424542868616	0.0000834291673853082
32	1.0202599586335	1.36380666479908E+05	0.30496649997718	0.99896951259138	4.4192395164296E+04	4.30922059783936E+04	6.18383820943508E+04	3536050.17487276	0.17679204185714	45.4799391048329	0.0071312072361153
33	1.0252205468235	2428.3660896045	0.3919842522981	0.99870928911927	5.02171937279964E+04	6.36439355289247E+04	4.0506198615201E+04	3314096.08472375	26.0837164275196	13.6444384429261	0.00912164325125142
34	1.0267187842884	615.39905533088	0.37891600414094	0.99850375224902	4.94039886251899E+04	4.25519896340565E+04	3.92868713713474E+04	2443816.29180666	6.77460146192126	14.7693960835034	0.00880467248108941
35	1.0292843198046	1942.2877622189	0.00025043564714257	0.99769164084561	1271.1706374631	993.62021721565	1575.1926723887	82331.9217557416	0.0110692607766722	0.0132814338513705	0.00000580473709090539
36	1.0311688236709	7.6634707545148	0.18461593738993	0.99809426939553	3.45521596041196E+04	3.80281308774124E+04	3.34921568694996E+04	726800.717945673	1.72911203837158	0.160799520193423	0.00427131086235933
37	1.0334935948892	7.3983617228074	0.045228901628169	0.99840342196989	1.71239866227505E+04	2.09840846083499E+04	1.60032808267922E+04	803898.947368961	2.12215404570294	0.178880699187906	0.00104407095962726
38	1.0370178017705	7.6172783700508	0.010437715083572	0.99970280280075	8245.5800788088	1.11077775454883E+04	7082.0050844879	617934.66015997	1.15733141082823	0.19127020062744	0.000240126997530939
39	1.053375214945	7.2913731503846	0.51686947905678	0.99845896680551	5.84436103691082E+04	5.89271753036442E+04	6.87864950582747E+04	2070836.53376415	0.0320564241789221	14.6652287137756	0.0117062975002451
40	1.0543641033233	7.509022434096	0.0067705343069623	0.99852202612695	6692.3020806762	3.72532959486397E+04	9489.3406072341	6137744.76731235	127.790321409032	1.07043404123326	0.000153198352864627
41	1.0563379104689	1.36688154854062E+04	0.0011081748559951	0.99793372736059	2709.2330423937	3609.828782878	4342.3260047626	372991.437516589	0.110625241353176	0.363761111838639	0.0000250280601582472
42	1.0612327443719	29.398818973604	0.02306704886768	0.99901543742206	1.23958802614016E+04	1.35693734813439E+04	3.72722293008082E+04	4980802.45690445	0.185895798518195	83.5375412014306	0.00051856494902611
43	1.0641131070435	711.76385574442	0.00036077204061208	0.99866391894792	1552.0651471946	3.43298698984767E+04	1873.7656370876	6555876.67827383	144.300112861347	0.0138998587639582	0.00000808847867447962

Courtesy W. Mueller

Beam-ion effects

Beam-ion effect @ brightness mode

- Nominal brightness filling patter: 3840 = 80 * (20*2 +8)
- Half-fill filling pattern: 3840 = 40 * (40 +8) + 1600
- We verified that the long gap can clean ions.
- Maximum number of accumulated ion within one turn is comparable.
- The beam ion growth rate are almost the same ("fast-ion" mechanism within one turn)
- Long gap does not help too much to mitigate the ion effects in our case.

Transient beam loading @ brightness mode

Courtesy C. Li

- A strong transient beam loading due to non-uniform filling scheme and coupled bunch instability is foreseen due to the cavity fundamental mode.
- Double active RF system.
- However, if the low lever RF control loop can be applied appropriately, the impedance of the fundamental mode beam can sample will be significantly reduced.
- we show how bunch length is affected by the transient beam loading effect in spite of the coupled bunch instability.

Main cavity	3rd Harmonic Cavity								
29600	17000								
7400	2700								
3	5.3								
8.16E+6	36E+6								
200 mA									
-0.747	0.697								
8E+6	2.391E+6								
1.08	-1.746								
5.983E+6	1.7418E+6								
2.393	-2.442								
8.67e+8	1.535E+6								
0.3523	-0.928								
	Main cavity 29600 7400 3 8.16E+6 200 mA -0.747 8E+6 1.08 5.983E+6 2.393 8.67e+8 0.3523								

Conclusion

- Baseline scenarios are stable when using both feedback and chromaticity
 - Gain of $\sim 1/20$ turns seems to be sufficient with significant safety margin
 - Both resistive wall and ion effects
 - Beam can be stabilized at 0 chromaticity beneficial for machine studies
- To guarantee transverse stability HOMs shall be damped below $55 \ k\Omega/m$
 - Otherwise, need to be carefully examined separately
- Ongoing work:
 - Refining the impedance model (see talk of *A. Rajabi*)
 - Studying non-uniform filling patterns
 - Developing an in-house code for transient beam loading and longitudinal stability due to fundamental mode (see *C. Li, eeFACT2022*)

Transverse feedback might not be efficient

Low intensity:
$$\Omega^{l} - \omega_{\beta} - l\omega_{s} \sim -i \frac{MN_{b}r_{0}c}{2\gamma T_{0}^{2}\omega_{\beta}} \sum_{p} Z(\omega')J_{l}^{2}(\omega'\tau - \chi) \qquad \omega' = (pM + \mu)\omega_{0} + \Omega$$

 $R \in [a;b]$

30

PETRA IV Case: Single Bunch

No V3, $\sigma_{z} = 2.5 \text{ mm}$

PETRA IV Case: 50-turn FB

No significant difference for different fillings schemes with damper

Brightness mode with uniform 4ns filling: Vertical plane

S. Antipov, Transverse feedback is essential for the feasibility of the 200 mA Brightness mode 33

Bunch lengthening due to 3rd harmonic RF and impedance

- Tracking in ELEGANT
 - 10⁵ macroparticles

